A residuals-based transition model for longitudinal analysis with estimation in the presence of missing data.

نویسندگان

  • Tulay Koru-Sengul
  • David S Stoffer
  • Nancy L Day
چکیده

We propose a transition model for analysing data from complex longitudinal studies. Because missing values are practically unavoidable in large longitudinal studies, we also present a two-stage imputation method for handling general patterns of missing values on both the outcome and the covariates by combining multiple imputation with stochastic regression imputation. Our model is a time-varying auto-regression on the past innovations (residuals), and it can be used in cases where general dynamics must be taken into account, and where the model selection is important. The entire estimation process was carried out using available procedures in statistical packages such as SAS and S-PLUS. To illustrate the viability of the proposed model and the two-stage imputation method, we analyse data collected in an epidemiological study that focused on various factors relating to childhood growth. Finally, we present a simulation study to investigate the behaviour of our two-stage imputation procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Approach to Estimate Parameters of a Random Coefficient Transition Binary Logistic Model with Non-monotone Missing Pattern and some Sensitivity Analyses

‎A transition binary logistic model with random coefficients is‎ ‎proposed to model the unemployment statues of household members in‎ ‎two seasons of spring and summer‎. ‎Data correspond to the labor‎ ‎force survey performed by Statistical Center of Iran in 2006.‎ ‎This model is introduced to take into account two kinds of‎ ‎correlation in the data one due to the longitudinal nature o...

متن کامل

A MODEL FOR MIXED CONTINUOUS AND DISCRETE RESPONSES WITH POSSIBILITY OF MISSING RESPONSES

A model for missing data in mixed binary and continuous responses, which can be used on cross-sectional data, is presented. In this model response indicator for the binary response can be dependent on the continuous response. A closed form for the likelihood is found. For data with a complicated pattern of missing responses some new residuals are also proposed. The model of multiplicative heter...

متن کامل

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout

Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...

متن کامل

چند رویکرد برخورد با مقادیر گمشده‌ متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی‌ بالینی

Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics in medicine

دوره 26 17  شماره 

صفحات  -

تاریخ انتشار 2007